

GRUPOS ELECTRÓGENOS NAFTEROS

MODELOS: GNW-100 y GNW-103

IMPORTA Y DISTRIBUYE EN ARGENTINA: ROBERTO C. RUMBO S.R.L.

ROBERTO C. RUMBO S.R.L. MANUAL DEL USUARIO

Por favor lea atentamente este manual.

Contiene información importante sobre normas de seguridad.

GENERADOR NAFTERO

GNW-100

GNW-103

NIWA

ROBERTO C. RUMBO S.R.L. Dirección: Leopoldo Lugones 1661 Don Torcuato, Buenos Aires Argentina

Tel: 4741-4580 (Rot.) Fax: 4741-4580 Int. !7

E- mail: ventas@rumbosrl.com.ar WEB: www.rumbosrl.com.ar

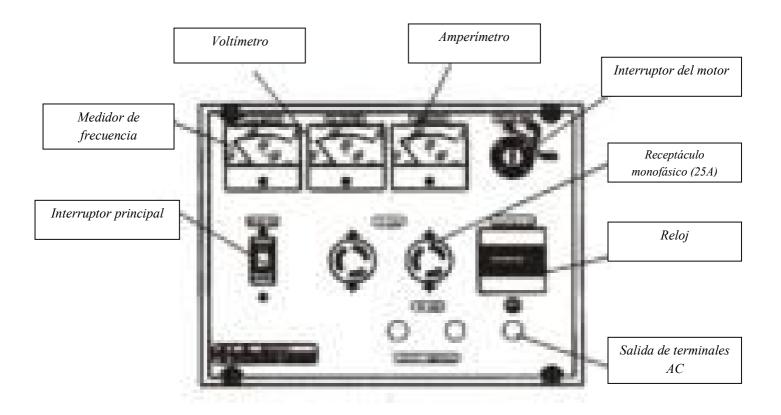
PREFACIO

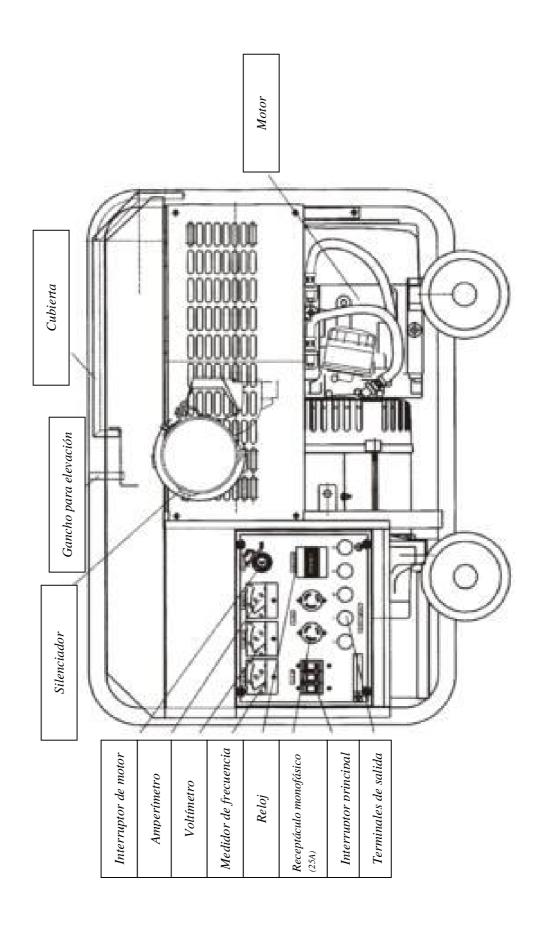
Lo felicitamos y le agradecemos haber comprado nuestro equipo; nuestro principal objetivo es brindarle un generador de gran calidad que pueda garantizar su satisfacción y estamos confiados de que así será.

Este manual que brinda instrucciones sobre el generador de la unidad, contiene toda la información básica necesaria para asegurar el funcionamiento satisfactorio y confiable de la unidad.

Por favor utilice este manual como complemento del manual del motor que se encuentra dentro de embalaje.

PRECAUCIÓN


- 1. Utilice aceite lubricante SAE 10W-30 después del primer cambio de aceite luego de 10 horas de funcionamiento.
- 2. No conecte la salida del generador a tomas de corriente AC.
- 3. Parar obtener información sobre el funcionamiento del motor y el mantenimiento vea el manual del motor.


CONTENIDOS

1. Nombre de partes importantes y componentes	4
2. Pasos preliminares al funcionamiento	7
3. Medidas de seguridad para el mantenimiento	8
4. Procedimiento introductorio	9
5. Procedimiento inicial	10
6. Procedimiento de detención	11
7. Guía sencilla para la detección y solución de problemas	12
8. Problemas y soluciones	13
9. Diagrama del esqueleto eléctrico	14
10. Apéndice	16

1. NOMBRE DE PARTES IMPORTANTES Y COMPONENTES

Panel de control GNW-100

Especificaciones

	Modelo			GNW-100 GNW-103		
Generador	AC SALIDA	50HZ	Prime (Uso continuo)	8.5KVA	10.5KVA	
			Standby (Emergencia)	9.5KVA	11.5KVA	
	Fase			Monofásico/ dos líneas	Trifásico/ cuatros líneas	
	Factor de potencia			1.0	0.8	
	Voltaje			*230V	*400V	
	Sistema de excitación			Autoexcitación		
	Terminales				2	
	Sistema de impulsión			Unido al motor		
	Regulación de voltaje			1.5%(Velocidad máxima)		
	N	Iodelo		MNW-200		
Máximo poder de salida			lida	12.0kW/3000rpm, 14.0kW/3600rpm		
	Tipo			Motor naftero cuatro tiempos refrigerado por aire OHV		
	Volúmen del cilinro			6	88cc	
3	No. de cilindros			2		
Motor	Sistema de arranque			Eléctrico (rebobinador)		
	Consumo de combustible			370g /kWh		
	Capacidad del tanque de combustible			26L		
	Nivel de ruido (7m/dB)			72dB/50Hz, 78dB/60Hz		
Peso neto (con ruedas)		152(159) kg				
Dimensiones netas (con ruedas)		910 600 620 mm				
Largo x ancho x alto		(910 785 710mm)				

2. PASOS PRELIMINARES AL FUNCIONAMIENTO

1) Requisitos medioambientales

1-1) Uso al aire libre

- A) Instale su equipo en un lugar seco y limpio.
- B) Evite la exposición directa al sol. Ubique su equipo en la sombra.
- C) Mantenga su unidad sobre un piso nivelado para evitar que ésta se mueva. Para mayor seguridad, ajuste la unidad al suelo.

1-2) Uso en lugares cerrados

- A) Utilice el equipo en lugares bien ventilados o lejos de las entradas de aire. Se requiere mucho aire para realizar esta operación.
- B) Mantenga la entrada y salida de aire, como así también la salida de los gases de escape a 1.5m del cualquier obstáculo.
- C) Utilice a menos de 40° de temperatura.
- D) Instale su unidad sobre una superficie nivelada.

2) Preparación del motor

- A) Controle el nivel de combustible y de aceite. Agregue combustible o aceite en caso tener menos del nivel mínimo especificado en el manual de usuario del motor.
- B) Controle todos los tornillos y tuercas del motor. Ajuste tornillos y tuercas que puedan estar flojos.

3) Conexión eléctrica con carga

A) Asegúrese de que la carga no supere la capacidad de energía de la unidad. Conecte correctamente las conexiones eléctricas.

3. MEDIDAS DE SEGURIDAD PARA EL MANTENIMIENTO

- A). Sólo personal autorizado debe testear, mantener y reparar esta unidad.
- B). Siempre utilice protección en el rostro, guantes de goma y ropa protectora mientras trabaje con esta unidad.
- C). No toque el generador o alguna parte con carga con sus manos al descubierto o mientras esté descalzo.
- D). Mantenga sus manos, cabello, ropa suelta o herramientas fuera de partes móviles, como ventiladores, correas o rotores.
- *E*). No respire los gases de escape.
- D). Detenga el motor y déjelo enfriar antes de controlar o agregar combustible.
- G). No agregue combustible mientras fuma o si la unidad se encuentra cerca de chispas o llamas.
- H). Observe la correcta polaridad de las baterías.
- I). No incline la batería.
- J). Utilice equipos con capacidad adecuada para cargar y transportar la unidad y sus componentes.

4. PROCEDIMIENTO INTRODUCTORIO

- A) Controle todos los fluidos diariamente. (Esta unidad ha sido despachada sin aceite lubricante)
- B) Gire la válvula de combustible a la posición ON (Encendido).
- C) Ajuste el interruptor principal en la posición OFF (Apagado).
- D) Tire de la palanca del cebador.
- E) Coloque la llave de encendido en la posición START (Arranque).
- *F) Precalentar durante 3-5 minutos.*

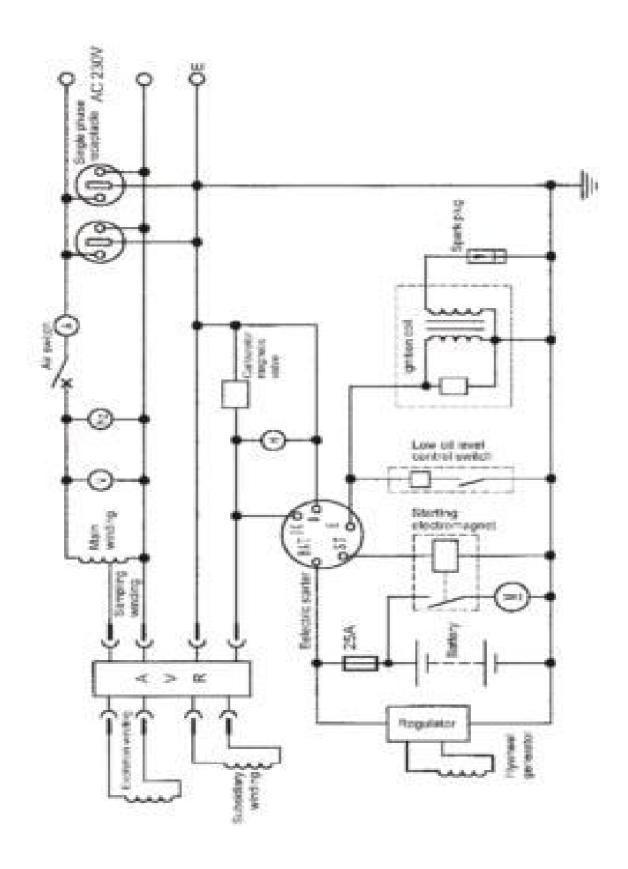
5. PROCEDIMIENTO INICIAL

- A) Regrese el nivel de control de velocidad a la posición izquierda.
- B) Asegúrese de que el voltímetro indique "Normal".
- C) Coloque el interruptor principal en posición ON (Encendido).
- D) Asegúrese de que el voltaje tenga la carga normal.

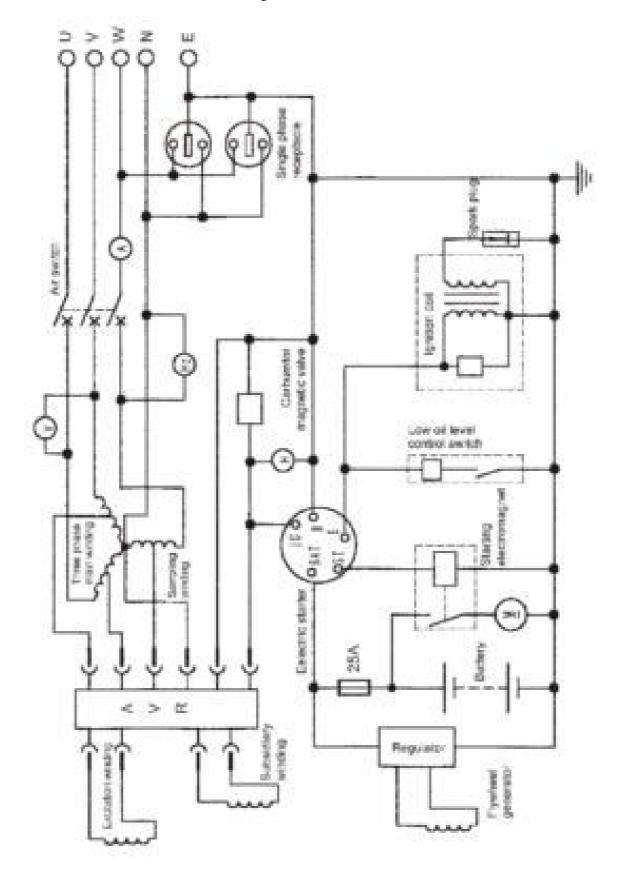
6. PROCEDIMIENTO DE DETENCIÓN

- A). Coloque el interruptor principal en posición OFF (Apagado).
- B). Coloque la llave de encendido en la posición STOP (Detención).
- C). Cierre la válvula de combustible en caso de guardar o transportar la unidad.

7. GUIA SENCILLA PARA LA DETECCIÓN Y SOLUCIÓN DE PROBLEMAS


Esta guía brinda información para la detección y solución de problemas sin los instrumentos de control o medición que se necesitan para verificar la unidad. Sin embargo, los instrumentos de control y medición son necesarios para diagnosticar problemas en las diferentes partes y componentes de la unidad. En caso de no poder determinar la causa del problema a simple vista, deberá consultar a su proveedor.

8. PROBLEMAS Y SOLUCIONES


PROBLEMA	POSIBLE CAUSA	SOLUCIÓN
	1. Velocidad del motor muy baja.	Aumente la velocidad del motor hasta alcanzar el índice de voltaje necesario.
No hay energía o la energía es	2. Rotura del diodo del rotor.	2. Reemplace el diodo.
insuficiente.	3. Rotura del circuito eléctrico del rotor.	3. Repare o reemplace.
	4. Rotura del interruptor principal.	4. Reemplace el interruptor.
	5. Falla AVR.	5. Reemplace el AVR.
	1. Velocidad del motor muy lenta.	1. Aumente la velocidad del motor hasta alcanzar el índice de voltaje necesario.
La energía está disponible pero el generador no se carga.	2. Línea de transmisión entre el generador y la carga demasiado larga.	2. Ubique la unidad lo más cerca posible de la carga.
	3. Carga demasiado grande.	3. Reduzca la carga a un índice igual o menor a la capacidad de la unidad.
Las bandas de carga del interruptor principal	1. Sobrecarga	1. Reduzca la carga
disminuyen de inmediato.	2. Falla en la carga	2. Corrobore la falla en el circuito y repárela.
Ruido proveniente del rodaje	Rodaje gastado	Reemplace el rodaje
El voltímetro no funciona	Falla de voltímetro	Reemplace el voltímetro
El amperímetro no funciona	Falla del amperímetro	Reemplace el amperímetro

9. DIAGRAMA DEL ESQUELETO ELÉCTRICO

GNW-100 DIAGRAMA DEL ESQUELETO ELÉCTRICO

GNW-103 DIAGRAMA DEL ESQUELETO ELÉCTRICO

10. APÉNDICE

1- La elección del cable eléctrico

La elección del cable eléctrico depende de la capacidad de corriente adecuada para el cable y de la distancia existente entre la carga y el generador. Además, el tramo de cable debe ser lo suficientemente grande.

Si la corriente en el cable es mayor a la adecuada, éste puede recalentarse y prenderse fuego. Si el cable es largo y fino, el voltaje de entrada del artefacto eléctrico no será suficiente; esto puede provocar que el generador no se encienda. Mediante el uso de la siguiente formula, Ud. podrá calcular el valor del potencial "e".

Potencial (V)=
$$\frac{1}{x}$$
 duración x corriente (A) x $\sqrt{3}$
58 área de sección

Las relaciones entre la corriente adecuada y la duración, sección del cable aislante (simple o de múltiples capas) son las siguientes:

(Haga de cuenta que el voltaje utilizado es 220V y que el potencial es menor a 10V)

Aplicación del cable aislante de una capa

Sección mm2

Duración	50m	75m	100m	125	150	200
Corriente						
50A	8	14	22	22	30	38
100A	22	30	38	50	50	60
200A	60	60	60	80	100	125
300A	100	100	100	125	150	200

Aplicación del cable aislante de capas múltiples

Sección mm2

Duración	50m	75m	100m	125	150	200
Corriente						
50A	14	14	22	22	30	38
100A	38	38	38	50	50	60
200A	38x2	38x2	38x2	50x2	50x2	50x2
300A	60x2	60x2	60x2	60x2	80x2	100x2

2. Tabla de coeficiente modificado de energía ambiente

Las condiciones de salida del generador:

Altitud: 0 m

Temperatura ambiente: 25°C

Humedad relativa:

30%

Coeficiente modificado ambiente: C (Humedad relativa 30%)

Altitud (m)	Temperatura ambiente ('C)					
	25	30	35	40	45	
0	1	0.98	0.96	0.93	0.90	
500	0.93	0.91	0.89	0.87	0.84	
1000	0.87	0.85	0.82	0.80	0.78	
2000	0.75	0.73	0.71	0.69	0.66	
3000	0.64	0.62	0.60	0.58	0.56	
4000	0.54	0.52	0.50	0.48	0.46	

Nota:

Cuando la humedad relativa es de 60%, el coeficiente modificado es C-0.01 Cuando la humedad relativa es de 80%, el coeficiente modificado es C-0.02 Cuando la humedad relativa es de 90%, el coeficiente modificado es C-0.03 Cuando la humedad relativa es de 100%, el coeficiente modificado es C-0.04

Ejemplo de cálculo:

Si la potencia índice del generador es P=5KW, la altitud 1000m, la temperatura ambiente 35 °C y la humedad relativa del 80%, la potencia índice del generador será de $P=PN\left(C-0.02\right)=5$ x $\left(0.82-0.02\right)=4KW$